Numerical Efficiency of the Conjugate Gradient Algorithm - Sequential Implementation
نویسندگان
چکیده
In the paper we report on a second stage of our efforts towards a library design for the solution of very large set of linear equations arising from the finite difference approximation of elliptic partial differential equations (PDE). Particularly a family of Krylov subspace iterative based methods (in the paper exemplified by the archetypical Krylov space method Conjugate Gradient method) are considered. The first part of the paper describes in details implementation of iterative algorithms for solution of the Poisson equation which formulation has been extended to the three-dimensional. The second part of the paper is focused on the performance measurement of the most time-consuming computational kernels of iterative techniques executing basic linear algebra operations with sparse matrices. The validation of prepared codes as well as their computational efficiency have been examined by solution a set of test problems on two different computers.
منابع مشابه
A new hybrid conjugate gradient algorithm for unconstrained optimization
In this paper, a new hybrid conjugate gradient algorithm is proposed for solving unconstrained optimization problems. This new method can generate sufficient descent directions unrelated to any line search. Moreover, the global convergence of the proposed method is proved under the Wolfe line search. Numerical experiments are also presented to show the efficiency of the proposed algorithm, espe...
متن کاملA Three-terms Conjugate Gradient Algorithm for Solving Large-Scale Systems of Nonlinear Equations
Nonlinear conjugate gradient method is well known in solving large-scale unconstrained optimization problems due to it’s low storage requirement and simple to implement. Research activities on it’s application to handle higher dimensional systems of nonlinear equations are just beginning. This paper presents a Threeterm Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear e...
متن کاملGlobal conjugate gradient method for solving large general Sylvester matrix equation
In this paper, an iterative method is proposed for solving large general Sylvester matrix equation $AXB+CXD = E$, where $A in R^{ntimes n}$ , $C in R^{ntimes n}$ , $B in R^{stimes s}$ and $D in R^{stimes s}$ are given matrices and $X in R^{stimes s}$ is the unknown matrix. We present a global conjugate gradient (GL-CG) algo- rithm for solving linear system of equations with multiple right-han...
متن کاملSEISMIC DESIGN OPTIMIZATION OF STEEL STRUCTURES BY A SEQUENTIAL ECBO ALGORITHM
The objective of the present paper is to propose a sequential enhanced colliding bodies optimization (SECBO) algorithm for implementation of seismic optimization of steel braced frames in the framework of performance-based design (PBD). In order to achieve this purpose, the ECBO is sequentially employed in a multi-stage scheme where in each stage an initial population is generated based on the ...
متن کاملOn the hybrid conjugate gradient method for solving fuzzy optimization problem
In this paper we consider a constrained optimization problem where the objectives are fuzzy functions (fuzzy-valued functions). Fuzzy constrained Optimization (FO) problem plays an important role in many fields, including mathematics, engineering, statistics and so on. In the other side, in the real situations, it is important to know how may obtain its numerical solution of a given interesting...
متن کاملA new Levenberg-Marquardt approach based on Conjugate gradient structure for solving absolute value equations
In this paper, we present a new approach for solving absolute value equation (AVE) whichuse Levenberg-Marquardt method with conjugate subgradient structure. In conjugate subgradientmethods the new direction obtain by combining steepest descent direction and the previous di-rection which may not lead to good numerical results. Therefore, we replace the steepest descentdir...
متن کامل